FLOW THROUGH PIPE

Pipe:

It's a hollow cylinder that is used for conveying fluid.

Energy losses in pipe:

A fluid experiences resistance while flowing through a pipe. This resistance causes loss of energy.

There are two types of loss of energy.

1. Major loss- This is due to friction.
2. Minor loss- This is due to abrupt changes in flow path. e.g. sudden change in cross section of pipe, bend in pipe, obstruction in pipe, etc.

Loss of energy due to friction:

It's determined using the formulae of Darcy-Weisbach and Chezy.

Darcy-Weisbach Formula:

$$
\mathrm{h}_{\mathrm{f}}=\frac{4 f L V^{2}}{2 g d}
$$

Where
$\mathrm{h}_{\mathrm{f}}=$ Loss of energy (head) due to friction
$f=$ Coefficient of friction
$=\frac{16}{R_{e}}$ for $\mathrm{Re}<2000$
$=\frac{0.079}{R_{e}^{1 / 4}}$ for Re_{e} varying from 4000 to 10^{6}
L= Length of pipe
$\mathrm{V}=$ mean velocity of flow
$d=$ Diameter of pipe.

Chezy's formula:

$$
h_{f}=\frac{f^{\prime} P}{\rho g A} L V^{2}
$$

Where

$\mathrm{h}_{\mathrm{f}}=$ Loss of energy (head) due to friction
$A=$ Area of cross section of pipe.
$\mathrm{P}=$ wetted perimeter of pipe.
L= Length of pipe.
$\mathrm{V}=$ Mean velocity of pipe.
The expression " A / P " is called hydraulic mean depth or hydraulic mean radius. It's denoted by ' m '.

Hydraulic mean depth, $\mathrm{m}=\frac{A}{P}=\frac{\frac{\pi}{\mathrm{d}} \mathrm{d}^{2}}{\pi \mathrm{~d}}=\frac{\mathrm{d}}{4}$
Now inserting the expression of hydraulic mean radius in above formula, we get

$$
\begin{aligned}
h_{f} & =\frac{f^{\prime}}{\rho \mathrm{g}} L V^{2} \frac{1}{m} \\
\Rightarrow>V^{2} & =h_{f} \frac{\mathbf{\rho g}}{f^{\prime}} m \frac{1}{L}=\frac{\mathbf{\rho g}}{f^{\prime}} m \frac{h_{f}}{L} \\
\Rightarrow V & =\sqrt{\frac{\rho \mathbf{g}}{f^{\prime}}} \sqrt{m \frac{h_{f}}{L}}
\end{aligned}
$$

Let $\sqrt{\frac{\rho \mathrm{g}}{f^{\prime}}}=\mathrm{C}$, Where ' C ' is called Chazy's constant.

$$
\frac{h_{f}}{L}=\mathrm{i} \text {, where ' } \mathrm{i} \text { ' is called loss of head per unit length of pipe. }
$$

Substituting the above expressions we get

$$
V=C \sqrt{m i}
$$

The above expression is called Chazy's formula.

Hydraulic gradient line:

It's defined as the line joining the points that represent the sum of pressure head and datum head along the length of pipe in which the fluid flows.

Total gradient line:

It's defined as the line joining the points that represent the sum of pressure head, datum head and kinetic head along the length of pipe in which the fluid flows.

